972 research outputs found

    Fluctuations of the partial filling factors in competitive RSA from binary mixtures

    Full text link
    Competitive random sequential adsorption on a line from a binary mix of incident particles is studied using both an analytic recursive approach and Monte Carlo simulations. We find a strong correlation between the small and the large particle distributions so that while both partial contributions to the fill factor fluctuate widely, the variance of the total fill factor remains relatively small. The variances of partial contributions themselves are quite different between the smaller and the larger particles, with the larger particle distribution being more correlated. The disparity in fluctuations of partial fill factors increases with the particle size ratio. The additional variance in the partial contribution of smaller particle originates from the fluctuations in the size of gaps between larger particles. We discuss the implications of our results to semiconductor high-energy gamma detectors where the detector energy resolution is controlled by correlations in the cascade energy branching process.Comment: 19 pages, 8 figure

    A Classical Bound on Quantum Entropy

    Get PDF
    A classical upper bound for quantum entropy is identified and illustrated, 0Sqln(eσ2/2)0\leq S_q \leq \ln (e \sigma^2 / 2\hbar), involving the variance σ2\sigma^2 in phase space of the classical limit distribution of a given system. A fortiori, this further bounds the corresponding information-theoretical generalizations of the quantum entropy proposed by Renyi.Comment: Latex2e, 7 pages, publication versio

    A Wang-Landau method for calculating Renyi entropies in finite-temperature quantum Monte Carlo simulations

    Full text link
    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) for the purpose of calculating the Renyi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analogue to the density of states for Stochastic Series Expansion QMC allowing a direct calculation of Renyi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, 2D transverse field Ising model, and 3D Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.Comment: 9 pages, 7 figure

    Information theoretical properties of Tsallis entropies

    Full text link
    A chain rule and a subadditivity for the entropy of type β\beta, which is one of the nonadditive entropies, were derived by Z.Dar\'oczy. In this paper, we study the further relations among Tsallis type entropies which are typical nonadditive entropies. The chain rule is generalized by showing it for Tsallis relative entropy and the nonadditive entropy. We show some inequalities related to Tsallis entropies, especially the strong subadditivity for Tsallis type entropies and the subadditivity for the nonadditive entropies. The subadditivity and the strong subadditivity naturally lead to define Tsallis mutual entropy and Tsallis conditional mutual entropy, respectively, and then we show again chain rules for Tsallis mutual entropies. We give properties of entropic distances in terms of Tsallis entropies. Finally we show parametrically extended results based on information theory.Comment: The subsection on data processing inequality was deleted. Some typo's were modifie

    Collapse of the quantum correlation hierarchy links entropic uncertainty to entanglement creation

    Full text link
    Quantum correlations have fundamental and technological interest, and hence many measures have been introduced to quantify them. Some hierarchical orderings of these measures have been established, e.g., discord is bigger than entanglement, and we present a class of bipartite states, called premeasurement states, for which several of these hierarchies collapse to a single value. Because premeasurement states are the kind of states produced when a system interacts with a measurement device, the hierarchy collapse implies that the uncertainty of an observable is quantitatively connected to the quantum correlations (entanglement, discord, etc.) produced when that observable is measured. This fascinating connection between uncertainty and quantum correlations leads to a reinterpretation of entropic formulations of the uncertainty principle, so-called entropic uncertainty relations, including ones that allow for quantum memory. These relations can be thought of as lower-bounds on the entanglement created when incompatible observables are measured. Hence, we find that entanglement creation exhibits complementarity, a concept that should encourage exploration into "entanglement complementarity relations".Comment: 19 pages, 2 figures. Added Figure 1 and various remarks to improve clarity of presentatio

    Quantum Monte Carlo calculation of entanglement Renyi entropies for generic quantum systems

    Full text link
    We present a general scheme for the calculation of the Renyi entropy of a subsystem in quantum many-body models that can be efficiently simulated via quantum Monte Carlo. When the simulation is performed at very low temperature, the above approach delivers the entanglement Renyi entropy of the subsystem, and it allows to explore the crossover to the thermal Renyi entropy as the temperature is increased. We implement this scheme explicitly within the Stochastic Series expansion as well as within path-integral Monte Carlo, and apply it to quantum spin and quantum rotor models. In the case of quantum spins, we show that relevant models in two dimensions with reduced symmetry (XX model or hardcore bosons, transverse-field Ising model at the quantum critical point) exhibit an area law for the scaling of the entanglement entropy.Comment: 5+1 pages, 4+1 figure

    Random databases with correlated data

    Get PDF
    A model of random databases is given, with arbitrary correlations among the data of one individual. This is given by a joint distribution function. The individuals are chosen independently, their number m is considered to be (approximately) known. The probability of the event that a given functional dependency A → b holds (A is a set of attributes, b is an attribute) is determined in a limiting sense. This probability is small if m is much larger than and is large if m is much smaller than 2 H 2(A→b)/ 2 where H 2(A→b) is an entropy like functional of the probability distribution of the data. © 2012 Springer-Verlag Berlin Heidelberg

    In a search for a shape maximizing packing fraction for two-dimensional random sequential adsorption

    Full text link
    Random sequential adsorption (RSA) of various two dimensional objects is studied in order to find a shape which maximizes the saturated packing fraction. This investigation was begun in our previous paper [Cie\'sla et al., Phys. Chem. Chem. Phys. 17, 24376 (2015)], where the densest packing was studied for smoothed dimers. Here this shape is compared with a smoothed nn-mers, spherocylinders and ellipses. It is found that the highest packing fraction out of the studied shapes is 0.58405±0.00010.58405 \pm 0.0001 and is obtained for ellipses having long-to-short axis ratio of 1.851.85, which is also the largest anisotropy among the investigated shapes.Comment: 14 pages, 7 fiure

    Collision entropy and optimal uncertainty

    Full text link
    We propose an alternative measure of quantum uncertainty for pairs of arbitrary observables in the 2-dimensional case, in terms of collision entropies. We derive the optimal lower bound for this entropic uncertainty relation, which results in an analytic function of the overlap of the corresponding eigenbases. Besides, we obtain the minimum uncertainty states. We compare our relation with other formulations of the uncertainty principle.Comment: The manuscript has been accepted for publication as a Regular Article in Physical Review
    corecore